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An ev,ent-driven method for parallel simulation of a class dynamic Monte Carlo models is 
presented. The method can be applied to several models studied in rhe compu?ational physics 
such as Ising spin simulations by the method of Metropolis, Rosenbluth, Rosenbluth, Teller, 
and Teller. continuous time Ising spin simulation by Glauber, and the dynamic binary alloy 
simulation. Unlike previously known parallel multi-spin algorithms, the proposed algorithms 
do not change the simulated model. For example, the asynchrony and randomness of update 
time arrivals which are present in Glauber’s formulation, are not disturbed here and the 
simulated update history is precisely the same as it is in the serial algorithm. The theoretical 
efficiency evaluation is encouraging: for 768 x 768 spins using a parallel processor with 250 
processing elements, the estimated effreiency is not lower than 71%. This means a parailel 
speed-up of 180 in the computations which were previously believed inherently serial. 
The algorithm by Bcrtz. Kales, and Lebowitz can be incorporated, fsrther contributing to 
speed-up. ?’ 19% Academic P:ess. Inc. 

1. INTRODUCTION 

In the basic model of Ising spin simulations [g], a configuration is defined by the 
spin variables s(r) = +1 specified at the vertices r of a two or three dimensional 
lattice. In the standard Monte Carlo model, invented by Metropolis, Rosenbluth, 
Rosenbluth, Teller, and Teller [ 121, the evolution of the configuration is a sequence 
of one spin updates: Given a configuration. define the next configuration by choos- 
ing a vertex Y uniformly at random and changing the spin s(v) to -S(V) with 
probability p which is determined by the old values of s(v) and neighbors .s(v’). 
With probability 1 - p, the siv) remains unchanged. 

The standard model represents a certain discrete time Markov chain. Originally, 
this chain was designed as an integrating Monte Carlo device, where the measure 
was defined by the chain equilibrium distribution. The transient evolution of the 
configuration was considered an artifact. Later, Glauber [6] introduced a con- 
tinuous time probabilistic dynamic for an Isin g system. Although in both models, 
the equiiibrium distribution is the same, and both could serve as integrating Monte 
Carlo devices, Glauber’s dynamic model was also intended to represent the time 
evolution of a physical system. 

The dynamic Ising model can be described as follows: A rate L is chosen. 
103 
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Independent, rate 1, Poisson processes of attempted spin change arrivals are 
associated with vertices of the lattice. If an attempted change arrives at a vertex v, 
the spin s(v) is changed to -S(V) with probability p. With probability 1 - pY the 
spin s(v) remains unchanged. The probability p is determined in the same manner 
as in the standard algorithm, using the values of S(V) and neighbors s(v’) just before 
the update time. 

The similarity between the two models is not accidental. It is known that a given 
discrete time Markov chain can be “embedded” into a continuous time Markov 
chain which has the same equilibrium distribution and, up to a proportionality, 
the same off-diagonal transition matrix (“uniformization” procedure, see, e.g., 
Keilson [9], Ross [14]). Both chains produce the same random sequences of 
conligurations but over different time scales: in the discrete chain, time intervals 
between attempted updates are equal, in the continuous chain, they are random 
and exponentially distributed. The dynamic model is, in fact, the continuous time 
Markov chain which corresponds to the discrete Markov chain of the standard 
model. In this sense, both standard and dynamic models can be considered as the 
same model, and the evolution of the configuration is the standard model can be 
thought of as representing the time evolution of a physical system. 

For a large system, many updates of each spin are required to obtain useful 
results, e.g., to reach the equilibrium of the chain. The simulation on a general 
purpose serial computer took so long that special purpose hardware was built 
for speeding up the processing (Ogielski [ 131). Bortz, Kalos, and Lebowitz [3], 
developed a serial algorithm (the BKL algorithm) which avoids processing unsuc- 
cessful spin change attempts. They report up to a lo-fold speed-up over the 
straightforward implementation of the standard model. 

The BKL algorithm does not change the original standard model, but only the 
method of simulating changes. Attempts have been made to speed up the Ising 
simulation by parallel computations (Friedberg and Cameron [5], Creutz [4]). In 
these computations the model is changed as well as the algorithm. For example, a 
discrete time Markov chain corresponds to the multi-spin model [S] with the same 
equilibrium distribution as in both Glauber’s and standard model. However, the 
transition matrix and the random sequences of configurations of the chain are 
substantially different from those of the standard algorithm. 

Glauber’s dynamic model is commonly considered to be the most natural 
description of the time evolution of a physical system which is subject to unpredic- 
table random local changes (see Binder [2] and references therein). The model is 
usually believed to be inherently serial: an algorithm can process only one update 
at a time. 

Contrary to this belief, the present paper describes an efficient method for 
parallel simulation of the class of continuous time, dynamic models, in particular, 
for Glauber’s Ising model and for the dynamic binary alloy model. The method 
promises unlimited speed-up when the lattice and the parallel computer are 
sufficiently large. The BKL algorithm can be incorporated, further contributing to 
speed-up. 
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An important property of the proposed parallel method of simulation is that it 
does not change the simulated model. To make this point clearer, the proposed 
method should be compared with the following well-known time-dritlen simulation: 
An increment L3f is chosen. The lattice is observed at time instances 0, dt, 2dt, . . . . 
The attempted changes which fall within slot [k dt, (k- + 1 j dt) may be processed 
concurrently. This processing must be completed before processing the next slot 
[(k + I ) 3r. (k + 2) drj begins. The contradiction between precision and efficiency is 
inherent to the time-driven method. Namely, when dt is larger, more events can be 
processed at an iteration, but more errors are also caused by the dt-quantization of 
update times. 

By contrast. the algorithms proposed in the given paper are event-driven (see 
[ I 11 for a more general discussion). Precise representation of update times is not 
sacrificed in favor of parallelization; the simulated update history is exactly the 
same as it is in the serial algorithm. For example, if Glauber’s dynamic model 
is simulated. the asynchrony and randomness of update time arrivals are not 
disturbed. 

This paper is organized as follows: Section 2 gives a general statement of the 
problem and includes two saturated’ algorithms, one synchronous and one 
asynchronous. (Both algorithms are applicable to the same asynchronous dynamic 
Ising model.) Section 3 presents two examples of Tsing simulations borrowed from 
131: single spin flips and spin exchanges. Ways to supersaturate processing and to 
incorporate the BKL algorithm are described in Section 4. Section 5 discusses a 
method to collect statistics while performing the dynamic simulation in parallel. 
The computational experiments reported in Section 0 suggest (expectedly) that 
efficiency decreases when the degree of the lattice increases and increases when the 
degree of supersaturation increases. The efficiency obtained for the saturated Ising 
spin Rip model in two dimensions is not lower than 12% for up to 96” processing 
elements. For the supersaturated algorithm in which one PE carries a 48 x 48 sub- 
lattice, the efficiency is not lower than 71% for up to 16’ PEs. (Use of 256 PEs with 
efficiency 71 Sb implies speedup of 180.) 

2. SATURATED ALGORITHMS 

Time t is continuous. The simulated system is a finite graph or hypergraph’ C. 
Each vertex v has a state s = s(r). At random times, a vertex is granted a chance to 
change the state. The changes, if they occur, are instantaneous events. Random 

’ In a saturated algorithm the number of spins matches the number of available processing elemenrs, 
so that one PE carries one spin. In a supersaturated algorithm the number of spins is larger than the 
number of avaiable processing elements, so that one PE can carry several spins. Thts terminology is due 
to C. Kruskal [lo]. 

’ A hypergraph G (see Berge [ 11) is a pair (., b, r 31, E), where {v) is a set of vertices and E= {ei7 ezr ..,) 
is a family of subsets of {v} called edges. If leil = 2 for all i, then G is just a graph. For a given vertex 11, 
neighbors[v)= {(JIEPe). 
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attempts to change the state of a vertex are independent of similar attempts for 
other vertices. 

The specific law of attempted change arrivals and the considerations for 
computing the next state are not important for the algorithms described in 
this section. The algorithms will be formulated in terms of these procedures: 
tinle-qf-nex-attempt ( ) and nextstate ( ). They are defined as follows: given time 
t old of an arrival to vertex v, the time t of the next arrival can be computed in the 
form 

t = tin?e-of_nextLattempt (1’. told), (2.1) 

where always t > told ; and given the old state of the vertex and the states of the 
neighbors just before time t, s,~~,, (neighbors(v)), the next state s(v) = s,(v) can be 
computed in the form 

s,(v) = nextstate(s,-,(neighbors(v)), t), W? 

where the possibility s,(v) = s, _ J v j is not excluded. 
In (2.2), s (neighbors(v)) denotes the indexed set of states of all the neighbors of v 

including v itself. For example, if neighbors(v) = (v,, v2, r3, v4, v,;, then 
s (neighbors(v)) = (s(v, ), s(vz), s(vj), s(v4), s(vj)). Subscript t - 0 expresses the idea 
of “just before t”; formally it means the left-side limit at t, as in the case a,_O(z) = 
lim r-I.x<I a(z). According to (2.2), the value of s( v j instantaneously changes at time 
t from s I-0(~j) to S,(V). At time t, the value of s(v) is already new. Without this “just 
before” feature the rule for choosing a new state may become ambiguous if two 
neighbors attempt to change their states at the same simulated time: 

t(v) = t(d) for v’ E neighbors(v), 1” # v. (2.3) 

The possibility of representing random and unpredictable changes in Glauber’s 
dynamic model in the form of deterministic equations (2.1) and (2.2) should not be 
surprising. It is, in fact, a standard way of simulating a continuous time Markov 
chain on a computer. In particular, a Poisson arrival is usually simulated in a deter- 
ministic, predictable and reproducible manner. Namely, the time t of the arrival is 
obtained, given the time told of the previous arrival as follows. 

t = told -; log r(n(told)), 

where /, is the rate, r(n) is the nth pseudo-random number in the sequence 
uniformly distributed on (0, 11, and n(t) is the invocation counter. 

The parallel computer which simulates this system consists of a number of 
processing elements running concurrently; one PE is assigned to simulate exactly 
one vertex of G. The PEs are interconnected by the network which matches the 
topology of G. A PE can receive information from its neighbors. The PE assigned 
for vertex v maintains state s(v j and local simulated time t(v). The latter has no 
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/* Initially. new-s = s (~1, new-f = t(v) */ 

8. 
9. 

else i 
synchronize; /* barrier 1 *I 
synchronize I* barrier 2 *i 

FIG. 2.1. Synchronous algorithm. 

connection with the physical time in which the parallel computer runs the program 
except that t(llj may not decrease when the physical time increases. At a given 
physical instance of simulation. different 1~ may have different values of t(v). Two 
versions of the parallel algorithm are presented: synchronous and asynchronous. 
Figure 2.1 presents the code executed by the PE whrch simulates vertex I* in the 
synchronous algorithm. 

Variables I( 11) and s(v) are assumed to be visible (accessible for reading only ) by 
the neighbors of \I. Variables rzen’s and neu’-r are invisible to all the PEs except the 
owner; these variables are private. Statements “synchronize” are synchro~~zat~o~ 
barriers. When a PE hits a “synchronize” statement it must wait until all the other 
PEs hit a “synchronize” statement; then it may resume.’ 

At a given iteration. all PEs are split into two groups: the PEs which failed the 
test in line 1 synchronize at lines 8 and 9, those which passed the test synchronize at 
line 3 and then 7. The former two idle synchronizations are required to match the 
latter two synchronizations. The algorithm implies no synchronizati.on except for 
that explicit in lines 4, 7, 8, and 9. Statements between the synchronization barriers 
are not necessarily executed in lock-step. 

’ Efficient standard methods to implement such synchronization exist. For example, the following 
method is decrihed in [ 111: A PE which hits a “synchronize” barrier issues an I-am-rrady signal. Wher. 
all P-ant-ready signals are collected, go signals are issued, one signal for each PE. After a PE receives a 
go signal, it resumes execution. If the number of PEs is large, a tree network, like the one in Fig. 5.2: is 
employed to collect the incoming I-am-ready signals and the propagate the outcoming go signals. Time 
3flog h’) is reqvired for both operations, where N is the number of PEs. The scheme taries depending 
on the architecture of the host computer. Barrier synchronization comes for free on a synrhrcno~ 
lockstep computer. e.g., on a vector processor. 
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An example is helpful: Let G be a circle with four vertices v = 0, 1, 2, and 3, and 
four edges (0, 1 ), (1, 2), (2, 3), and (3, 0). Set neighbors(v) consists of three vertices: 
(v - 1) mod 4, v itself, and (v + 1) mod 4. Assume initially t(v) = 0, v = 0, 1, 2, 3. 
Take Eq. (2.1) in the form 1’ = f + 1 + (v + t) mod 3. Here time increment 
At = 1 + (v + t) mod 3 plays the role of a “random” interval between the arrivals. 
The state values and the state equation (2.2) are irrelevant in the present discussion. 
Table 2.1 represents evolution of the local times t(v) during the first three cycles of 
the algorithm in Fig. 2.1. 

At the end of cycle 1, vertex v = 0 is at time t(0) = 1. The time of its right 
neighbor is t( 1) = 2 and the time of its left neighbor is t(3) = 1. Both neighbors’ 
times are not smaller than t(0). According to the algorithm, at cycle 2, vertex v = 0 
can update its state using the current values of its neighbors’ states. 

Observe that the right neighbor is currently ahead in simulated time, it has 
already progressed up to time t( 1) = 2. Nevertheless, it is correct to use the future 
state of the right neighbor since the state has been constant over the time interval 
[0,2) which covers the update time t(O)= 1. 

The current state of the left neighbor is in the “present” (that is t(3) = t(0) at the 
end of cycle 1) and the neighbor itself is going to update its state at cycle 2. The 
two-step assignment in Fig. 2.1 via the intermediate private variables (step one, in 
lines 2 and 3, and step two, in lines 5 and 6), and both synchronization barriers 
assure correct execution of this simultaneous update of both states, s(O) and s(3). 

The algorithm in Fig. 2.1 performs this simultaneous update as follows: First, 
vertices v = 0 and v’ = 3 read states s, --. of each other and compute their private 

TABLE I 

Three Iterations of the Synchronous Algorithm 

Y 0 1 2 3 

Initial values I(V) 0 0 0 0 

Cycle 1 f(Y) < min dv’) 
Y’E neighborsp, 

dl=l+(v+f)mod3 

t(v) 

True True True True 

1 2 3 1 

1 2 3 1 

Cycle 2 True False False True 

2 2 

3 7 3 3 

Cycle 3 ti\l) 4 min t( Ld) 
1,’ t ne,ghbon, P) 

;Ir=l+(v+t)mod3 

41fJ 

False True False True 

- 1 1 

3 3 3 4 
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cycle ( 

I. wait-until t(v) Q min 
v’ E neis$hors Iv) 

lb3 ; 

2. s b) - next-state is(neighborsCvv)), I Cv)) ; 

3. t (v) - time-of-next-attempt b, t (,)I 

FIG. 2.2. Asynchronous algorithm. 

rzeu4s; then, after synchronization barriers, Y and v’ update their states, thus 
making sure that no write interferes with a read. 

In this example, update times t(v) are integers, which makes (2.3 j probable On 
the other hand, in the dynamic Ising simulation the update times t(v) are indepen- 
dent Poisson arrivals, and the possibility (2.3) can be ignored. The corresponding 
protective mechanisms in the algorithm can be abandoned as well. The resulting 
asynchronous algorithm is presented in Fig. 2.2. 

By definition, 
wait-until predicate 

is semantically equivalent to 

label: if not predicate then goto label 

(The definition says nothing about how often or fast the predicate is tested. j Thus, 
the effect of the repeated “if’ testing (line 1, Fig. 2.1) in the absence of syn- 
chronization is the same as the effect of the “waittuntil” statement (line I, Fig. 2.2) 

The asynchronous algorithm generates correct simulation for the following 
reason: If vertex 1’ passed the “waituntil” in line 1. its neighbors will not be able to 
pass the line before v has completed an update of t(v) in line 3. Consequently, there 
will be no interference with updating S(V) and t(v). The assumption that (2.3) is 
impossible is crucial in the above inferences. 

Both algorithms are free from deadlock since at least one vertex v, the one whose 
i(v) is minimal over the entire graph, is able to make progress. This guaranteed 
worst case performance is substantially exceeded in the examples presented in 
Section 3. 

A mire general system can be simulated, in which upon an arrival of an 
attempted change to vertex v, the states s(v’) of all the vertices v’ E neighbors(v) 
may change as well as the state of s(v) Formally this means replacement of 
Eq. (2.2) with 

s[(neighbors(v)) = nextstate(s,-,&neighbors(v)), t). (2.2’) 

The “just before” feature of the subscript t -0 in (2.2’) no longer saves it from 
ambiguity, if two distinct neighbors v and v’ decide to change their neighborhoods 
neighbors(v) and neighbors(v’) at the same simulated time. Then it might not be 
certain which new states should be assigned to the vertices in set 

neighbors(v) n neighbors(v’). (2.4) 
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For this reason, the more general model must prohibit coincidence of update times 
in pairs of different vertices 1’ and V’ such that set (2.4) is not empty. This 
prohibition is not a burden in the case of independent Poisson arrivals. 

Changes in the algorithms caused by replacement (2.2) and (2.2’) are obvious. In 
particular, line 2 in the algorithm in Fig. 2.2 should now read 

s(neighbors(v)) t tzexrsrate(s(neighbors(v)), t(v)); 

3. Two EXAMPLES 

Single spin flip king model. G is a two- or three-dimensional finite orthogonal 
lattice with periodic boundary conditions. A vertex of the lattice hosts a spin. 
Figure 3.1 presents a 4 x 4 lattice. It can also be viewed as an appropriate intercon- 
nection topology for the parallel computer hosting the simulation, where the circles 
represent the PEs. The state S(V) is a spin, S(V) = S,, = +l; state change means the 
spin flip. The realization of Eq. (2.1) is as follows: each vertex generates its own 
pseudo-random number P, uniformly distributed on (0, 11, and each increases its 
local time t by -(l/A) log r, where 1 is the chosen fixed rate of attempted changes. 

The realization of Eq. (2.2) is based on the Hamiltonian 

E= -J 1 S,.S,.. - HE S,,, (3.1) 
Y, \,’ Y 

where J and Hare constant, 1’ and v’ are neighboring vertices. Given temperature T 
and Boltzmann’s constant k, the probability of configuration change is 
p = P( - A E/kT), where 

AE = E( new configuration) - E( old configuration) (3.2) 

and where function P is usually computed as 

P = x/( 1 + x); x = exp( -A E/kT) (3.3) 

FIG. 3.1. A 4 x 4 lattice. 
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or as 

P= 
i 

1, 
expi - AE/lkT), 

if BEdO, 
otherwise. 

(3.3’j 

Exphcit expressions for AE are different in different dimensions In two dimen- 
sions, the change of the energy due to the flip of spin S, is 

where subscript indices i - 1, i + 1, j- 1, .j + 1 are understood module the size of the 
lattice. 

ange model. G is a hypergraph, &al to the graph f the lattice in the 
xampie: a vertex in G is an edge in the original graph, an an edge in G is a 

vertex in the original graph (see [ 1 ] j. One of 32 vertices of the hypergraph, dual to 
the graph in Fig. 3.1 is (Sz2. Szj). It has 6 neighbors, (SIz, Sz2j, (S,,, SI,), 
(Szj, S24j. is,;, S,,), iSz2, S,,), and (S,,, Sz2j, which are cotmected with ( S72t S2 j ; 
along two edges, S,? and Sz3. Figure 3.1 again can be viewed as an i~terco~~e~~~o~ 
for the computer hosting the simulation, but now PEs are located on the connec- 
tion lines between the circles, whereas the circles themselves represent the connec- 
tion buses. In the following description a capital V is reserved for a vertex of the 
hypergraph, whereas a lower case 1’ denotes an ordinary vertex of the lattice. 

The state ,F( P-j = s(i’ 1. v2) = (s(vl). s(vz)) - (* 1. 5 I), is a paEr of spins, and the 
exchange of unlike spins causes a change of the state. This m.odel represents the 
evolution of an alloy which consists of two atomic species id and B. Spin + S is 
identified with species A and spin - 1 with species B. Spin exchange leaves the 
number of each species unchanged. 

The realization of Eq. (2.1) is the same as above, Le,, each vertex (pair of spins ) 
generates its own pseudo-random number r. uniformly distributed on (0, 14, and 
increases its local time r by -(l/L) log r, where 2 is the chosen fixed rate of 
attempted changes. Viewing Fig. 3.1 in terms of this example, each connection fine 
has its own pseudo-random generator, not each circle as in the previous example. 

State change is described by Eq. (2.2’). The simpler equation, j2.2j, cannot be 
used. Indeed, the exchange of the pair of unlike spins S,, and ST3 in Fig. 3.1 would 
change the state of vertex V= ( Sz2, S23), as well as the state of any vertex 
I’ E neighborsi V), e.g., the state of v’ = (S,, , ST1 ), 

As was assumed in the general case, Section 2. no two close updates can have the 
same simulated time. A consequence of violating this prohibition for the binary 
ahoy example might be as folllows: Suppose, vertices V and Y’ are chosen as above, 
and their current spin values are S,, = -1, S,:= +I, S,,= -I (this means that 
siees S,, _ and S,, are occupied by two B atoms and site S?, is occupied by an A 
atom ). The update of s( V) would mean that the ,L9 atom moves to S23, whereas the 
update of s( V’) would mean that the A atom moves to S,, . These two possibilities 
conflict with each other. 
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The probability p = P( - AEjkT) of change is derived from the same Hamiltonian 
(3.1) where v and V’ are ordinary vertices in the lattice (not in the hypergraph), 
following the same equations (3.3), (3.3), or (3.3’) and equation 

AE( v, 1”) = 
A(v) + ,4(v’)-4JS,,S,,r if S,, #S,., 

03 if S,, = S,., (3.5) 

where /l(v) is the change of energy caused by the single spin flip s(v) --f -S(V); in 
the square lattice case n(v) = n(i, j) is given by (3.4). If S,, =S,,, then the state 
change equation (2.2’) degenerates to identity (nothing changes); the remaining 
equation (2.1) means simply advancement of time. 

4. SUPERSATTJRATION AND THE BKL ALGORITHM 

Consider the effect of supersaturation in the example of single spin flip. A 
fragment of a square lattice is represented in Fig. 4.la, wherein each PE carries an 
m x 111 sublattice, F?I = 4. 

The neighbors of a vertex carried by PEl are vertices carried by PE2, PE3, PE4, 
or PE.5. PEl has direct connections with these four PEs (Fig. 4.lb). Given vertex v 
in the sublattice of PEl, one can determine with which neighboring PEs com- 
munication is required in order to learn the states of the neighboring vertices. Let 
W(v) be the set of these PEs. Examples: W(A) is empty, W(B) = {PE5), 
W(C) = (PE3, PE4). 

PEI simulates the evolution of its sublattice as a sequence of one spin updates. At 
each update PEl does the following: 

1. Selects vertex v uniformly at random in the sublattice. 

0 

63 
PE5 

0 

0 
- 

PE2 

(0 0 0 01 

L 

OPEl O O O 
I---------- 

63;o @/O 

0 k--d O 

0 0 0 0 

PE3 

PE2 

cl-8-0 PE5 PEI PE3 

6 PE4 

I 0 0 0 0 
PE4 

FIG. 4.1. 

b) 

Supersaturation. 
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? I .  Waits until its local time becomes not larger than the local times of all the 
PES in if-(Y). 

3. As in the standard algorithm. determines the probability p of the spin flip 
using spins of the neighbors of V, Then S(V) changes to --s( s ) with probabihty p or 
remains unchanged with probability 1 - p. 

4. Increases its local time by -log r/(nzzJ), where F is a random number 
uniformly distributed on (0, 13, IX is the number of vertices in the subiattice, and j. 
is the attempted change rate for a vertex. 

The algorithm is asynchronous. The synchronization is not needed for the same 
reason as in the algorithm in Fig. 2.2, namely, possibility (2.3 ) can be ignored. 

At a given physical instance of simulation, ail the vertices carried by a PE have 
the same local time, but different PEs may have different local times. The algorirhm 
correctly simulates the history of updates, despite differences of local times at dif- 
ferent s&lattices. The following example may serve as an informal proof of this 
statement. Suppose PE1 is currently updating the state of vertex B (Fig. 4.1 t and its 
local time is t,. Since IV(B) = [PE5). this update is possible because the focal time 
of PE5, tj, is currentlv larger than t,. At present, PEI receives the state of D kom d 
PE5 in order to perform the update. This state is in time tj, i.e., in the future wirh 
respect to local time f,. Howerrer. the update is correct, since the state of D was the 
same at time f,) as it is at time rj. 

Indeed, suppose the state of D were to be changed at simulated local time ~~~ 
ri < t, < lj. At the moment when this change would be processed by PES, the local 
time of PEI would be larger than t,, and t, would be the focal time of PE5. After 
this processing has supposedly taken place. the local time of PE1 should not 
decrease. Yet nn the present it is t,, which is smaller that I,. This contradiction 
proves that the state of D cannot in fact change in the interval (tr. tj)= 

The ~~~it~~~a~ efficiency of the supersaturated algorithms as compared with their 
sacurated counterparts can be explained in the example of single spin flip, square 
lattice, as follows: In applying the saturated algorithms (Fig. 2.1 and Fig. 2.2) a PE 
may wait for its four neighbors. However, in the supersaturated algorithm, the PE 
waits for at most two neighbors. For example, when state of C in Fig. 4.1 is 
updated, PEI might wait for PE3 and PE4. Moreover, in at least (m - 2)’ cases out 
of f?z’, PEI does not wait at all, because f%‘(v) is empty. 

This additional efficiency becomes especially great ifs instead of set neighbcrsrl:) 
in the original formulation of the model, one uses sets 

neighbors’(r) ef next-to-nearest-neighbors(v) 

or. more generally, qth degree neighborhood, neighborsg(,v). The latter is defined for 
q > 1 inductively, 

neighborsY(r) Ef neighbors(neighbors”- ‘(v)). 
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where neighbors(S) for a set S of vertices is defined as neighbors(S) = 
u ,, E s neighbors(v). 

It is easy to rewrite the saturated algorithms for the case q > 1. The obtained 
codes have low efficiency, however. For example, in the single spin flip, square lat- 
tice case, one has IneighborsY( \?)I - 1 = 2q(q + 1). Thus, if q = 2, a vertex might have 
to wait for 12 vertices in order to update its spin. In the same example, if one PE 
carries an nz x 112 sublattice, and m > q, then PE waits for at most three other PEs 
no matter how large the q is. Moreover, if r?l> 2q then in (m - 2q)’ cases out of m2 
the PE does not wait at all. Further performance improvement is obtained by 
incorporating the BKL algorithm. 

The BKL algorithm splits all the vertices into a finite number of pairwise disjoint 
classes C,, C,, . . . . CLj. The rates 2~~ of changes (not just the attempts to change) for 
all the 1’ E C, are the same. Here pk is the probability that an attempted change 
succeeds for a vertex in class C,. In the example of single spin flip, square lattice, 
one has d= 10, because only 10 different values of 3E(i, j) in (3.4) hence 10 
different values of pk are possible. These different dE(i, j) are obtained when the 
five participating spins independently take on values + 1. At each iteration the BKL 
does the following: 

(i) Selects CkO at random according to the weights JCkl pk, k= 1, 2, . ..) d, 
and selects a vertex in C,, uniformly at random. 

(ii) Changes the state of the selected vertex. 
(iii) Increases the time by -log r/(1(2, ck<dJCkj pk)), where r is a random 

- ’ number uniformly distributed on (0, 11. 
(iv) Updates the membership of the classes. 

An obvious idea is to apply a copy of the BKL algorithm to each sublattice 
carried by a PE. Such a procedure, however, causes roll-backs, as seen in the 
following example: Suppose PEl were currently updating the state of vertex B 
(Fig.4.la) and its local time were t,, while the local time of PE5, t,, was larger 
than t,. Since D is a nearest neighbor to B, D’s membership might change because 
of B’s changed state. Suppose D’s membership were to indeed change. Although this 
change would have been in effect since time t,, PE5, which is responsible for D, 
would learn about the change only at time t5> t,. As the past of PE5 is not 
therefore, what PE5 has believed it to be, interval [tl, t,] must have been 
simulated by PE5 incorrectly and must be played again. This original roll-back 
might cause a cascade of secondary roll-backs, thirs generation roll-backs, etc. 

A modified BKL algorithm applies the original BKL procedure only to a subset 
of the vertices, whereas the procedure of the standard model is applied to the 
remaining vertices. More specifically: an additional separate class C, is defined. 
Co, unlike other C,, k> 0, always contains the same vertices. Steps (i)-(iv) are 
performed as above with the following modifications: 

(1 j The weight of C, in step (i) is taken to be IC,I. 



(2) If the selected v belongs to Co- then in step (ii) the state of 1’ may or may 
cot change. The probability p of change is determined as in the standard model, 

(3 j The time in step (iii) should be increased by -log Y,/(JL( Co -I- 
x1 Gk ctJ ICA-J pr-‘jf, where r is a random number uniformly distributed on (0, 11. 

Now consider again the sublattice carried by PEl in Fig. 4,Ia. The sublattice can 
be subdivided into the (UT - 2) x (nz - 2 ) “kernel” square K and the remaining boun- 
dary layer E. If first degree neighborhood. neighbors(v)? is replaced with the qth 
degree neighborhood, neighborsq(\tj, then the kernel is the central (nr - 2qj j: 
(W - .Q) square. and the boundary layer has width 4. In Fig. 2.la, the dashed square 
separates K from L. To apply the modified BKL procedure to the sublattice carried 
by PEl. the boundary layer L is declared to be the speciai fixed class C,. Similar 
identification is done in the other sublattices, As a result, the fast concurrent 
procedures on the kernels are shielded from each other by slower procedures on the 
layers. 

The roll-back is avoided, since state change of a vertex in a sublattice does not 
constitute state or membership change of a vertex in another sublattice. L?niess the 
performance of PEI is taken into account, the neighbors of PE1 cannot tell which 
algorithm PEi uses to update its kernel, the standard of the BKL, As the size of abe 
sublattice increases, both the relative weight of the kernel and the fraction of the 
fast BKL processing do. 

Thus far only the example of a square lattice has been discussed. The same 
method is valid for a general geometry of the lattice, in particular for the spin 
exchange (binary alloy j example. Observe, that in the Latter case, the boundaries 
between sublattices are “cutting” the circles where the spms reside not the connec- 
tion fines between the spins. 

5. COLLECTING STATISTICS 

Given function j’(X) defined on a spin configuration X, one must compute the 
time averages of the form 

The complexity burden in computing .f usually resides in a commutative an 
associative operation such as summation, minimization, or maximization performed 
with local quantities over the entire lattice. For such an f3 a local change in the 
Mice causes a simple update 0f.f: An algorithm, which sequentially generates local 
changes to X, updates f(X) and (5.1) after each change, spending only a bounded 
amount of extra computing per update. 

For a small or moderate number N of PEs involved in the parallel simulation, 
the same conventional method can be used. However, as the N increases, the serial 
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update method eventually becomes a bottleneck. The problem may be visualized in 
the following example. Imagine a parallel computer simulating an evolution of X( f j. 
As the computer works, the value of expression (5.1), of for that matter, just 
f(X(t)), is being charted on a paper roll. If one wishes each change in X(t j to be 
distinguishable on this chart, the drawing pencil must jump at the rate of about N 
times the rate of the changes in an individual PE, because local changes occur at 
different simulated times. In other words, the speed of the pencil must match the 
cumulative speed of the parallel computer. 

This example demonstrates that exact, on line with the parallel processing, 
calculation of (5.1) is impossible for a large N. A solution might be to scan X(t) at 
regular time intervals dr and to replace calculation of (5.1) with computing the 
following quantity 

(5.2) 

Note that the approximate evaluation of (5.1) in the form (5.2) is usually performed 
anyway, where At is chosen so that the correlation E{f(X(r))f(z + At))] is small. 

The corresponding modification to the asynchronous algorithm is presented in 
Fig. 5.1. In addition to simulating the history of vertex v, in this algorithm, the PE 
reports S(Y) = s,( v) at local times t = rzO dt, (~2~ + 1 j At, (no + 2) At, . . . . Variables 
ne~-t and 11 are private; At and Q are constants, whose values are the same for all 
the PEs. Statement “report s(\!!)” in line 5 implies a protocol of communication with 
the collecting statistics network (CSN). 

Consider the example presented in Fig. 5. 2. Here the computer configuration 
matches a circular graph G with 8 vertices I’~, i= 1, . . . . 8. Let At be 1, and denote S, 
the value of state s,( ). FIFO buffers are provided at the entrances to the CSN to 
“align” local times of different PEs. Since the buffer sizes are finite (four slots in 
Fig. 5.2), busy-waits might be involved in the execution of statement “report s(v)” 
(line 5, Fig. 5.1). In the snapshot of the buffers shown in Fig. 5.2, PE3 has already 
progressed beyond the time mark I = 11. There is no more slot in the entrance 

/* Initially new I = f b), n = no. t(v) < noAt */ - 
cycle I 

I. wait-until f(v) C min 
v’ E neighbors(v) 

t(v3 ; 

2. s(v) - next-state (s (neighbors (v)), I (v)) ; 

3. new-t - time-of-next-attempt (v, t (v)) ; 

4. while new-t > nAt { 
5. report s (v) ; 

6. n-n+1 

I; 
I. t(v) - new-t 

FIG. 5.1. Collecting statistics in the asynchronous algorithm. 
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r----------‘------------------------------------------------------------~ 
/ COLLECTING STATISTICS NETWORK 

EVENT PROCESSING NETWORK 

FIG. 5.2. The parallel for Ising simulation 

buffer corresponding to this PE and if PE 3 is ready to report its Siz, it might be 
delayed. 

Finite buffers introduce a restriction which is not present in the original 
algorithm in Fig. 2.2 According to this restriction the lag between concurrently 
processed local times cannot exceed a certain constant. The exact value of the con- 
stant in each particular instance depends on the relative positions of the update 
times within the Jr-slots. In any case, the constant is not smaller than dr x buffer 
size and not larger than dt + d t x buffer size. 

However. even without a buffer, the simulation does not become time-driven. In 
this sase, the concurrently processed local times might be within a distance of up to 
At from each other, whereas il t might be relatively large. No precision of update 
time representation is lost, although effkiency might degrade when both dr and the 
buffer size become too small? see Section 6. 

The major part of the computation off(X( t)) is distributed among the nodes of 
the CSN. For example, let f(X) mean the average value of s(v) over all 11 in the 
lattice. Then the major part of computation is the summation of S, over the lattice. 
While computing this sum, each node of the CSN adds the values received from the 
nodes below and sends the result to the node above until the overall sum appears at. 
the exit of the topmost node. Then this sum can be further processed using 
conventional methods. 

The CSN is not necessarily a binary network. The number of input connections 
can be higher than two to balance internal computations and communications. In 
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the event processing network shown in Fig. 5.2, one PE does not necessarily carry 
only one vertex; thus, supersaturation is possible. If a PE carries many vertices, it 
might as well precompute the quantity of interest over its sublattice. Then it would 
report this quantity instead of the state of its sublattice to the CSN. Various other 
modifications are also feasible. 

6. PERFORMANCE 

Modeling and analysis of asynchronous algorithms is a difficult theoretical 
problem. Strictly speaking, the following analysis is applicable only to synchronous 
algorithms. However, one may argue informally that the performance of an 
asynchronous algorithm is not worse than that of its synchronous counterpart, 
since expensive synchronizations are eliminated. 

First, consider the synchronous saturated saturated algorithm in Fig. 2.1. Let N 
be the size of the lattice and N,, be the number of vertices which passed the test in 
line 1, Fig. 2.1. The ratio of useful work performed, to the total work expanded at 
the iteration is No/N. This ratio yields the efficiency (or utilization) at the given 
iteration. Assuming that in the serial algorithm all the work is useful and that the 
algorithm performs the same computation as its parallel counterpart, the speedup 
of the parallel computation is the average efficiency times the number of PEs 
involved. Here the averaging is done over all the iterations with equal weights. 

Whether the test succeeds or not can be determined knowing only the times at 
each iteration; the configuration is irrelevant. This leads to the simplified perfor- 
mance model in which only local times are taken into account: at an iteration, the 
local time of a vertex is incremented if the time does not exceed the minimum of the 
local times of its neighbors. The increment is a random sample from a mean-one 
exponential distribution. 

Table II represents the efficiency for the experiments in which G is a circle with y2 
vertices. In these and other experiments reported below, 9 independent runs with 
different-seed random sequences were made for each table entry. During each run 
10,000 iterations were simulated. (The number of spin change attempts at each 
vertex was about 10,000 times the efficiency.) The 9 efficiencies obtained were 
processed using Student’s criterion with confidence at 99.99%. The average 
efficiency obtained and the computed interval limits are shown in each table entry. 

TABLE 11 

Efficiency for a Circle of Size n-A PE Carries One Vertex 

n 3 6 12 21 48 96 192 384 768 

Efficiency 0.3334 0.2851 0.2657 0.2566 0.2512 0.2487 0.2478 0.2473 0.2474 
_+O.O~l +0.0030 &0.0014 +0.0020 *0.0023 i.o.0022 +om33 ~0.0021 1-0.0012 
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It is seen that efficiency slowly decreases, starting with value f for a three-vertex 
cycle until it reaches the value slightly below 0.25 for the circle of size n, = 384. The 
further change for PI > n, appears beyond the resolution of these experiments 

Both saturated and supersaturated algorithms were tested for an II x n lattice. For 
the supersuturated algorithm the performance model is as follows: 

At an iteration, with probability pO = (nz - 2)2/n~‘, the local time of PE gets a 
random exponentially distributed increment. Here m x m is the size of the sublattice 

by a PE and pp is the probability that the PE wlfl choose a vertex v in the 
kernel, so that / W(v)l = 0. 

With probability $I = 4(rn - .2)/n?, the PE mus t check the time of one of its 
four neighbors before making Ihe update. The neighbor is chosen uniformly at rr?n- 
dom. Yf the time of the neighbor is not smaller than the time of the PE, then the 
Lime of this PE gets an increment, Here p, is the probability that PE will choose a 
vertex v in an edge but not in a corner, so that ! FV(v)l = 1. 

With the remaining probability p?. =4/In’, the PE checks the time of two if i:s 
adjacent neighbors (for example, in Fig. 4.1, PEl could check the times of PE3 and 
PE4). The two neighbors are chosen uniformly at random from the rour 
possibilities. Again, if the time of the PE is not larger than the time of each of the 
tested neighbor, then the time of the PE gets an increment. Here p2 Is the 
probability to choose a vertex 1’ in a corner, so that j CV(v)( = 2. 

TABLE III 

Efkiency for an II x n Lattice -.4 PE Carries an m x m S&lattice 
- 

,I 
3 6 12 24 48 96 192 384 768 

1,) 

I 0.1762. 0.1404 0.1276 0.1233 0.1215 0.1208 
~0.0008 +0.0014 i.O.0011 kO.0009 kO.0006 ~0.0006 

3 1 0.3897 0.3043 0.2744 0.2629 0.379 0.2566 
io.0037 *0.0025 *0.0023 iO.0026 ,O.OOll &0.0012 

6 ~ 0.5197 0.4282 0.3959 0.3829 0.37'74 0.3759 
+0.0085 +0.0049 kO.0052 kO.0039 &O.GO??. +0.0017 

12 - 1 0.6375 0.5538 0.5190 0.5087 0.5038 0 5013 
kO.0080 iO.0034 iO.0012 CO.0039 +0.0030 iC.0025 

24 - 1 0.7346 0.6609 0.6344 0.6240 0.6197 
+0.0089 kO.0078 &0.0047 to.0056 +0.X%8 

43 - - - 1 0.8073 is.7097 0.7283 0.7199 
iO.0106 &0.0072 +0.0085 ?O.OQ43 

96 - - 0.8624 0.8207 6.8620 
kO.0123 +O.OO46 1:O.Q082 
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The results presented in Table III show that the supersaturated algorithm 
improved performance significantly when compared with its saturated counterpart. 
For example, the efficiency for a 768 x 768 lattice (about 0.6 million spins), when 
one PE carries a 48 x 48 sublattice (about 2 thousand spins) is larger than 71%. 
This means a speedup of more than 180 usin 256 PEs. The number of spin change 
attempts at each vertex is about 10,000 times the efficiency divided by the number 
of spins in a sublattice. In this particular experiment each vertex attempted to 
update its spin about three times. Blank entries in this and the following tables are 
for experiments which were too long to complete. (A serial computer was used to 
perform these experiments.) 

Table IV presents the efficiencies for cubic Ising lattices. The model for the super- 
saturated algorithm is similar to that of the square lattices. It involves four 
probabilities: 

p0 = (nz -2)3/m3, the probability vertex 1’ is chosen in the kernel; 1 W(v)/ = 0; 
p, = 6(m - 2)‘/m3, the probability vertex 1’ is chosen in a face but not in an 

edge; / W(v)/ = 1; 
pz = 12(nz - 2)/m3, the probability vertex r is chosen in an edge but not in a 

corner; 1 W(v) / = 2; 
p3 = 8/nz3, the remaining probability: vertex v is in a corner; 1 W(r)/ = 3. 

Results taken from all three tables clearly indicate that performance degrades 
when the degree of the lattice increases. However, even in the 3D case, super- 
saturation makes the algorithm attractive: efliciency is larger than 50% for a 

TABLE IV 

Efficiency for an n x n x n Lattice-A PE Carries an m x m x m Sublattice 

n 
3 6 12 24 48 96 192 

112 

1 0.1077 0.0845 
*0.0015 ~0.0011 

3 1 0.2745 
* 0.0030 

6 1 

12 

24 

0.0783 0.0763 
* 0.0003 * 0.0004 

0.2036 0.1840 
+_0.0034 +_0.0018 

0.3949 0.3103 
_+ 0.0049 f 0.0040 

1 0.5191 
i 0.0058 

- 1 

0.1779 
+_0.0007 

0.2868 
&0.0016 

0.4352 
+ 0.0046 

0.6313 
*0.0112 

1 

0.2790 
*0.0017 

0.4093 0.4011 
& 0.0032 ~0.0016 

0.5583 0.5341 
+ 0.0074 k 0.0028 

0.7277 0.6644 
*0.0104 f 0.0062 

48 
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TABLE V 

Efficiency Degradation Caused by Bounded Lag 

Efficient!, 0.5038 0.503 1 0.4987 0 4643 5.4m @ 3136 
* 0.0030 +o.oozs *0.0012 :k 0.0035 +0.0035 +0.0623 

Lag 1 0.8 0.6 0.5 0.4 0.3 

Efficienq 0.2255 O.?OOO 0.1699 0.1526 0.1334 0.1111 
-i: 0.001 I +0.0010 +0.0012 + o.iiOQ9 + 0.0005 2 0.0006 

192 x I92 x 192 lattice (about 7 millions spins) when one PE carries a 24 x 24 x 24 
sublattice (about 14 thousand spins). This means a speedup of more than 250 using 
5 12 PES. 

In the experiments reported above, the lag between local times of any two PEs 
was not restricted. To see how the lag restriction affects the efficiency, 0rie 
experiment reported in Table III was repeated with various finite values of the lag. 
In this experiment, an II XIZ lattice is simulated and one PE carries an 171 x trr 
sublattice, where n = 384 and t?? = 12. The results are presented in Table V. 

In Table V. the unit of measure for a lag is the expectation of time intervals 
between attempted changes. For lags > 16, degradation of -efficiency is almost 
unnoticeable, when compared with the base experiment where lag = + 3~. Substan- 
tial degradation starts at about lag = 8; for lag = 1, the efficiency is about ha 
that in the base experiment. However, even for lag=O.3, the simulation remains 
practical, with an efficiency about 0.1. Since 1024 PEs execute the task, this 
efficiency means speedup of more than 100. 

7. CONCLUSION 

This paper demonstrates an efficient parallel method for simulating continuous 
time Ising spin systems. The algorithms are quite simple and easily implementable 
on appropriate hardware. In particular, the synchronous saturated algorithm 
(Fig. 2.1) can be implemented on a vector processor or any other synchronous 
SIMD machine, if a good parallel random number generator is available. In such 
an implementation the algorithm becomes useful when the number of processing 
eiements is sufficiently large. Each algorithm presented in the paper can be 
implemented on a general purpose asynchronous parallel computer, e.g., on the 
currently available bus machines with shared memory. The speed of such an 
implementation would depend on how fast the PEs are and how efficient the 
communication system is. 

Work is currently underway to implement the synchronous saturated algorithm 
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(Fig. 2.1) on the Connection Machine” [7] and to implement asynchronous 
supersaturated algorithms (Section 4) on the Balance computer. A detailed account 
of these implementations will be reported elsewhere. The preliminary results are 
quite satisfactory and agree with the theory. 

A challenging mathematical problem is proving that efficiency tends to a positive 
limit when the numbl;r of FEs increases to infinity. 
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